一、Work原理
1、图解
Worker启动Driver的一个基本原理,就是Worker内部会启动一个线程,这个线程可以理解为,就是DriverRunner,然后DriverRunner就会去负责启动Driver进程,并在之后对Driver进程进行管理;Worker启动Executor,其实和Driver的原理是一致的,都是通过一个Worker内部的本地线程,也就是ExecutorRunner,去启动Executor进程,然后在之后对Executor进程进行管理;
二、源码分析
1、Driver的启动
###org.apache.spark.deploy.worker/Worker.scalacase LaunchDriver(driverId, driverDesc) => { logInfo(s"Asked to launch driver $driverId") // 创建DriverRunner val driver = new DriverRunner( conf, driverId, workDir, sparkHome, driverDesc.copy(command = Worker.maybeUpdateSSLSettings(driverDesc.command, conf)), self, akkaUrl) // 将driver加入本地缓存 drivers(driverId) = driver // 开始DriverRunner driver.start() // 加上Driver要使用的资源 coresUsed += driverDesc.cores memoryUsed += driverDesc.mem }###org.apache.spark.deploy.worker/DriverRunner.scala###driver.start()方法def start() = { // 启动一个java线程 new Thread("DriverRunner for " + driverId) { // java线程体 override def run() { try { // 创建Driver的工作目录 val driverDir = createWorkingDirectory() // 下载用户上传的jar(java/scala,用maven打的jar包) val localJarFilename = downloadUserJar(driverDir) def substituteVariables(argument: String): String = argument match { case "{ {WORKER_URL}}" => workerUrl case "{ {USER_JAR}}" => localJarFilename case other => other } // TODO: If we add ability to submit multiple jars they should also be added here // 构建ProcessBuilder,传入了driver的启动命令,需要的内存大小等信息 val builder = CommandUtils.buildProcessBuilder(driverDesc.command, driverDesc.mem, sparkHome.getAbsolutePath, substituteVariables) // 启动Driver launchDriver(builder, driverDir, driverDesc.supervise) } catch { case e: Exception => finalException = Some(e) } // 对driver的退出状态做一些处理 val state = if (killed) { DriverState.KILLED } else if (finalException.isDefined) { DriverState.ERROR } else { finalExitCode match { case Some(0) => DriverState.FINISHED case _ => DriverState.FAILED } } finalState = Some(state) // 这个DriverRunner线程,向它所属的worker的actor,发送一个DriverStateChanged的事件 worker ! DriverStateChanged(driverId, state, finalException) } }.start() }###org.apache.spark.deploy.worker/DriverRunner.scala###downloadUserJar()方法private def downloadUserJar(driverDir: File): String = { // hadoop jar里的Path val jarPath = new Path(driverDesc.jarUrl) // 拿到hadoop配置 val hadoopConf = SparkHadoopUtil.get.newConfiguration(conf) // 获取HDFS的FileSystem val jarFileSystem = jarPath.getFileSystem(hadoopConf) // 创建本地目录 val destPath = new File(driverDir.getAbsolutePath, jarPath.getName) val jarFileName = jarPath.getName val localJarFile = new File(driverDir, jarFileName) val localJarFilename = localJarFile.getAbsolutePath // 如果jar在本地不存在 if (!localJarFile.exists()) { // May already exist if running multiple workers on one node logInfo(s"Copying user jar $jarPath to $destPath") // 用FileUtil将jar拷贝到本地 FileUtil.copy(jarFileSystem, jarPath, destPath, false, hadoopConf) } // 如果拷贝完了,发现jar还不存在,那么就抛出异常 if (!localJarFile.exists()) { // Verify copy succeeded throw new Exception(s"Did not see expected jar $jarFileName in $driverDir") } localJarFilename }###org.apache.spark.deploy.worker/DriverRunner.scala###launchDriver()方法private def launchDriver(builder: ProcessBuilder, baseDir: File, supervise: Boolean) { builder.directory(baseDir) def initialize(process: Process) = { // Redirect stdout and stderr to files // 重定向stdout和stderr输出流到文件中 val stdout = new File(baseDir, "stdout") CommandUtils.redirectStream(process.getInputStream, stdout) val stderr = new File(baseDir, "stderr") val header = "Launch Command: %s\n%s\n\n".format( builder.command.mkString("\"", "\" \"", "\""), "=" * 40) Files.append(header, stderr, UTF_8) CommandUtils.redirectStream(process.getErrorStream, stderr) } runCommandWithRetry(ProcessBuilderLike(builder), initialize, supervise) }###org.apache.spark.deploy.worker/Worker.scala###DriverStateChangedcase DriverStateChanged(driverId, state, exception) => { state match { // 如果Driver的状态是错误、完成、杀死、失败,就移除Driver case DriverState.ERROR | DriverState.FINISHED | DriverState.KILLED | DriverState.FAILED => removeDriver(driverId, state, exception) case _ => throw new Exception(s"Received unexpected state update for driver $driverId: $state") } }###org.apache.spark.deploy.worker/Worker.scala###Executor的启动 case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) => if (masterUrl != activeMasterUrl) { logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.") } else { try { logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name)) // Create the executor's working directory // 创建Executor本地工作目录 val executorDir = new File(workDir, appId + "/" + execId) if (!executorDir.mkdirs()) { throw new IOException("Failed to create directory " + executorDir) } // Create local dirs for the executor. These are passed to the executor via the // SPARK_LOCAL_DIRS environment variable, and deleted by the Worker when the // application finishes. val appLocalDirs = appDirectories.get(appId).getOrElse { Utils.getOrCreateLocalRootDirs(conf).map { dir => Utils.createDirectory(dir).getAbsolutePath() }.toSeq } appDirectories(appId) = appLocalDirs // 创建ExecutorRunner val manager = new ExecutorRunner( appId, execId, appDesc.copy(command = Worker.maybeUpdateSSLSettings(appDesc.command, conf)), cores_, memory_, self, workerId, host, webUi.boundPort, publicAddress, sparkHome, executorDir, akkaUrl, conf, appLocalDirs, ExecutorState.LOADING) // 把Executor加入本地缓存 executors(appId + "/" + execId) = manager // 启动ExecutorRunner manager.start() // 加上Executor要使用的资源 coresUsed += cores_ memoryUsed += memory_ // 向master返回一个ExecutorStateChanged消息 master ! ExecutorStateChanged(appId, execId, manager.state, None, None) } catch { case e: Exception => { logError(s"Failed to launch executor $appId/$execId for ${appDesc.name}.", e) if (executors.contains(appId + "/" + execId)) { executors(appId + "/" + execId).kill() executors -= appId + "/" + execId } master ! ExecutorStateChanged(appId, execId, ExecutorState.FAILED, Some(e.toString), None) } } }###org.apache.spark.deploy.worker/DriverRunner.scala###manager.start()def start() { // 创建一个java线程 workerThread = new Thread("ExecutorRunner for " + fullId) { override def run() { fetchAndRunExecutor() } } workerThread.start() // Shutdown hook that kills actors on shutdown. shutdownHook = new Thread() { override def run() { killProcess(Some("Worker shutting down")) } } Runtime.getRuntime.addShutdownHook(shutdownHook) }###org.apache.spark.deploy.worker/DriverRunner.scala###fetchAndRunExecutor() def fetchAndRunExecutor() { try { // Launch the process // 封装一个ProcessBuilder val builder = CommandUtils.buildProcessBuilder(appDesc.command, memory, sparkHome.getAbsolutePath, substituteVariables) val command = builder.command() logInfo("Launch command: " + command.mkString("\"", "\" \"", "\"")) builder.directory(executorDir) builder.environment.put("SPARK_LOCAL_DIRS", appLocalDirs.mkString(",")) // In case we are running this from within the Spark Shell, avoid creating a "scala" // parent process for the executor command builder.environment.put("SPARK_LAUNCH_WITH_SCALA", "0") // Add webUI log urls val baseUrl = s"http://$publicAddress:$webUiPort/logPage/?appId=$appId&executorId=$execId&logType=" builder.environment.put("SPARK_LOG_URL_STDERR", s"${baseUrl}stderr") builder.environment.put("SPARK_LOG_URL_STDOUT", s"${baseUrl}stdout") process = builder.start() // 重定向输出流到文件 // 将Executor的InputStream和ErrorStream输出的信息分别重定向到本地工作目录的stdout文件和stderr文件 val header = "Spark Executor Command: %s\n%s\n\n".format( command.mkString("\"", "\" \"", "\""), "=" * 40) // Redirect its stdout and stderr to files val stdout = new File(executorDir, "stdout") stdoutAppender = FileAppender(process.getInputStream, stdout, conf) val stderr = new File(executorDir, "stderr") Files.write(header, stderr, UTF_8) stderrAppender = FileAppender(process.getErrorStream, stderr, conf) // Wait for it to exit; executor may exit with code 0 (when driver instructs it to shutdown) // or with nonzero exit code // 调用process的waitFor()方法,启动Executor进程 val exitCode = process.waitFor() //executor执行完之后拿到返回状态 state = ExecutorState.EXITED val message = "Command exited with code " + exitCode // 向ExecutorRunner线程所属的worker actor,发送ExecutorStateChanged消息 worker ! ExecutorStateChanged(appId, execId, state, Some(message), Some(exitCode)) } catch { case interrupted: InterruptedException => { logInfo("Runner thread for executor " + fullId + " interrupted") state = ExecutorState.KILLED killProcess(None) } case e: Exception => { logError("Error running executor", e) state = ExecutorState.FAILED killProcess(Some(e.toString)) } } }###org.apache.spark.deploy.worker/Worker.scala case ExecutorStateChanged(appId, execId, state, message, exitStatus) => // 直接向master也发送一个ExecutorStateChanged消息 master ! ExecutorStateChanged(appId, execId, state, message, exitStatus) val fullId = appId + "/" + execId // 如果Executor状态是finished if (ExecutorState.isFinished(state)) { executors.get(fullId) match { case Some(executor) => logInfo("Executor " + fullId + " finished with state " + state + message.map(" message " + _).getOrElse("") + exitStatus.map(" exitStatus " + _).getOrElse("")) // 将executor从内存缓存中移除 executors -= fullId finishedExecutors(fullId) = executor // 释放Executor占用的内存和cpu资源 coresUsed -= executor.cores memoryUsed -= executor.memory case None => logInfo("Unknown Executor " + fullId + " finished with state " + state + message.map(" message " + _).getOrElse("") + exitStatus.map(" exitStatus " + _).getOrElse("")) } maybeCleanupApplication(appId) }###org.apache.spark.deploy.master/Master.scalacase ExecutorStateChanged(appId, execId, state, message, exitStatus) => { // 找到Executor对应的Application,然后再反过来通过Application内部的Executor缓存获取Executor信息 val execOption = idToApp.get(appId).flatMap(app => app.executors.get(execId)) execOption match { case Some(exec) => { // 如果有值 val appInfo = idToApp(appId) exec.state = state if (state == ExecutorState.RUNNING) { appInfo.resetRetryCount() } // 向driver同步发送ExecutorUpdated消息 exec.application.driver ! ExecutorUpdated(execId, state, message, exitStatus) // 判断,如果Executor完成了 if (ExecutorState.isFinished(state)) { // Remove this executor from the worker and app logInfo(s"Removing executor ${exec.fullId} because it is $state") // 从Application缓存中移除Executor appInfo.removeExecutor(exec) // 从运行Executor的Worker的缓存中移除Executor exec.worker.removeExecutor(exec) // 判断 如果Executor的退出状态是非正常的 val normalExit = exitStatus == Some(0) // Only retry certain number of times so we don't go into an infinite loop. if (!normalExit) { // 判断Application当前的重试次数,是否达到了最大值,最大值是10 // 也就是说,Executor反复调度都是失败,那么认为Application也失败了 if (appInfo.incrementRetryCount() < ApplicationState.MAX_NUM_RETRY) { // 重新进行调度 schedule() } else { // 否则,进行移除Application操作 val execs = appInfo.executors.values if (!execs.exists(_.state == ExecutorState.RUNNING)) { logError(s"Application ${appInfo.desc.name} with ID ${appInfo.id} failed " + s"${appInfo.retryCount} times; removing it") removeApplication(appInfo, ApplicationState.FAILED) } } } } } case None => logWarning(s"Got status update for unknown executor $appId/$execId") } }